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Abstract This letter studies and compares class-B VCOs

using spiral inductors with the proposed dual-layer patterned

floating shield (DL-PFS) and conventional single-layer

patterned floating shield (SL-PFS). The proposed DL-PFS

technique utilizes two lowest metal layers to effectively

reduce the capacitive induced current to the substrate in an

on-chip spiral inductor, thereby boosts its Q-factor by 40%

when comparedwith the conventional SL-PFS approach.We

fabricated, as a proof of concept, the class-BLC-VCOs using

the DL-PFS and SL-PFS in 0.13 lm CMOS. Operating at

10 GHz, the VCO with the DL-PFS inductor measures a

3.6 dB phase noise (PN) improvement at the same power

consumption of 2.12 mW. Specifically, the VCO with DL-

PFS inductor is tunable from 9.3-to-10.1 GHz andmeasured

PN at 10 GHz is -132.5 dBc/Hz at 10 MHz offset while

consuming 2.12 mW at the lowest 0.6 V supply. The

achieved figure-of-merit (187.4 dBc/Hz@1 MHz offset)

compares favorably with the recent state-of-the-art.

Keywords Inductor � Patterned floating shield � Substrate �
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1 Introduction

Phase noise performance of the voltage controlled

oscillators (VCOs) is often degraded by the limited

Q-factor due to non-zero resistivity of the metal trace,

skin/current crowding effect and substrate loss from

electromagnetic (EM) coupling [1]. Although proper

geometrical design, exploiting thick top metal, can alle-

viate the first two issues mentioned above, respectively,

but EM loss is still a major concern especially at high

operating frequency.

Patterned ground shield (PGS) implemented using

polysilicon was firstly used to block the electric field from

penetrating the silicon substrate [2]. However, it requires a

near ideal ground which is difficult to achieve due to finite

conductivity and parasitic inductance of the metals con-

necting to substrate ground, or noise coupled between

close-by circuits. To circumvent these, patterned floating

shield (PFS) using metal strips has been demonstrated with

better shielding performance when compared with PGS [3],

since the reflection loss for near field electric sources

requires shield with higher conductivity.

This letter demonstrates an improved dual-layer PFS

(DL-PFS) by optimally utilizing two lowest metal

layers, exhibiting a significant improvement in the Q

factor. Although the dual-layer patterned floating shield

has been studied in [4], it lacks of experimental proof

and specific design strategies for the floating shield.

Thus, Sect. 2 describes the design considerations for

the DL-PFS. Section 3 exhibits the experimental char-

acterization of the performances of the class-B VCOs

using DL-PFS and SL-PFS inductors, proving the

improvement of the inductor Q-factor. Finally, Sect. 4

draws the conclusion.
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2 Proposed dual-layer PFS (DL-PFS)

Conventionally, in the design of the single-layer PFS (SL-

PFS) the metal slits are perpendicular to the current flow in

the inductor [3] as shown in Fig. 1. This, as Fig. 2 shows,

terminates the induced current flowing tangentially to the

surface of the substrate in X and Y directions. However,

this approach is only effective for square inductors, but not

for the commonly used octagonal spiral inductors, as there

are both X and Y directed currents induced on the substrate

along the diagonal sides. In other words, the current on the

substrate flows radially out from the inductor turns, indi-

cating an electrically induced current [5].

Figure 3 shows the proposed DL-PFS, where we utilize

Metal-1 and Metal-2 to ensure minimized coupling

between the inductor at the top metal. The shield is also

significantly thinner than the skin depth to guarantee the

shielding effectiveness against the electric field by means

of reflection. Several issues should be considered in the

selection of the width and the gap. First, it is crucial to

ensure that the inductance of the metal strips is lower than

the inductor being shielded, hence leading to a desired

smaller width and gap. However, as shown in [2] and [5],

we observe a negligible improvement in the Q factor and

the degradation in the self-resonance frequency (fSR) as the

width and gap decrease beyond 1 lm. Therefore, the width

and gap are deliberately selected as 1 lm. We positioned

metal-1 horizontally to reduce the induced current in the

X-direction tangential to the substrate, and metal-2 verti-

cally to reduce the induced current in the Y-direction,

where it is dominant underneath along the diagonal path of

the inductor.

Figure 4 shows the surface current density on the sub-

strate of the unshielded inductor, and on the inductor with

SL-PFS and DL-PFS from the Sonnet EM simulation. Due

to the absence of vertical metal slits along the diagonal

path, the current induced on the substrate for the inductor

with SL-PFS is still significant [Fig. 4(b)]. However,

induced substrate current is greatly suppressed by DL-PFS

[Fig. 4(c)], reflecting a huge improvement in the Q factor

as shown in Fig. 5, in which DL-PFS achieves a peak Q of

38. The Q factor of the inductor with DL-PFS is 40%

higher when compared to the SL-PFS at 10 GHz. For the

same area, inductance is also increased as a result from the

proposed DL-PFS. In addition, by comparing SL-PFS and

diagonal SL-PFS, we also observed no difference in the Q

factor as shown in Fig. 6. Table 1 summarizes the tech-

nology parameters used and the performance parameters of

the inductors at 10 GHz.

3 Measurement results

We implemented and fabricated in 0.13-lm 1P8 M CMOS

with 3.3 lm-thick-top metal, as a proof of concept, the

unshielded, SL-PFS and DL-PFS inductor in a class-B

Fig. 1 a Spiral inductor with conventional SL-PFS using metal-1,

and b zoom-in view of the PFS

Fig. 2 Simulated surface current density induced on the substrate in:

a X direction, and b Y direction

Fig. 3 a Proposed DL-PFS underneath the spiral inductor, and

b zoom-in view of DL-PFS

Fig. 4 Magnitude of the surface current density induced on the

substrate at 10 GHz for a non-shielded inductor, b conventional SL-

PFS, and c proposed DL-PFS

498 Analog Integr Circ Sig Process (2017) 91:497–502

123



VCO with a tail current source, occupying 0.2 mm2 of core

area for each VCO. Each inductor has 140 lm inner

diameter with 25 lm trace width, separated by 3 lm gap.

The VCOs are supplied with a minimum of 0.6 V, since

VDD minð Þ ¼ VTH þ VDS tailð Þ, assuming VTH ffi 400 mV and

VDS tailð Þ ¼ 0:5VTH to guarantee the tail transistor to operate

in saturation region. Figures 7 and 8 show the schematic of

the VCO and the photomicrograph of the chip respectively

where it is tunable from 9.3-to-10.1 GHz.

Figure 9 depicts the measured phase noise (PN) of the

three VCOs with a 10 GHz carrier at 2.12 mW. The DL-

PFS inductor shows 3.6 dB improvement in PN at

10 MHz-offset when compared with the SL-PFS. This is in

agreement with the PN expression in 1/f2 region [6]

according to the impulse-sensitivity function (ISF),

Fig. 6 Q factor comparison between SL-PFS and diagonal SL-PFS

Fig. 7 Schematic of the class-B VCO

Fig. 8 Photomicrograph of the VCOs with non-shielded inductor

(left), conventional SL-PFS (middle) and proposed DL-PFS (right)

Table 1 Summary of technology parameters and performance

parameters at 10 GHz

Substrate resistivity (X cm) 10

Width of the trace (lm) 25

Inner diameter (lm) 140

Trace gap (lm) 3

Metal thickness (lm) 3.3

Inductor type Non-shielded SL-PFS DL-PFS

Inductance (nH) *1.13 *1.15 *1.2

Q *21.5 *26.9 *37.5

Self-resonant frequency (GHz) *27 *26 *22.6

Fig. 5 Simulated Q factor (top) and inductance (bottom) of the

inductors without shields, with conventional SL-PFS and proposed

DL-PFS
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where Q is the tank’s quality factor, C2
T;rms, C

2
M;rms, C

2
tail;rms

are the rms ISF associated with the tank loss, MOS cross-

coupled pair and tail transistor respectively, c is the MOS

channel noise factor, VRF and IRF are the rms values of

voltage and current across the LC tank. For a sinusoidal

oscillation, C2
T;rms ¼ C2

M;rms ¼ 1=2, C2
tail;rms ¼ 0:085 for

class-B VCO with a conduction angle of p=2. Based on (1),

40% improvement in the inductor Q factor yields 4.38 dB
Fig. 10 Measured FoM against power consumption

Table 2 Performance benchmark with the state-of-the-art VCOs

Topology This work [8] [9] [10] [11]

Inductor w/DL-

PFS

Inductor w/SL-

PFS

Non-shielded

inductor

Current reuse

Colpitts

Hybrid class

AB/B

Current reuse

hybrid class B/C

Class-B

NMOS top

biased

Power (mW)

@ supply

(V)

2.12@0.6 V� 2.93@0.6 V� 3.07@0.6 V� 2.1@1.2 V 2.4@0.75 V 2.2@1.2 V 3@1.2 V

Frequency

(GHz)

10 10 10 9.41 12.7 11.17 7.9

Tuning range

(GHz)

9.3–10.1

(8.25%)

9.31–10.16

(8.73%)

9.33–10.2

(8.91%)

8.57–10.21

(17.4%)

10.1–13.15

(25.6%)

10.15–11.17

(9.57%)

7.5–10.6

(31%)

PN @

1/10 MHz

(dBc/Hz)

-110.7/-132.5 -108.1/-130.9 -105.9/-128.9 -110.6/-130.6* -104.5/-124.5* -107.7/-127.7* -105/-125*

FoM @

1/10 MHz

(dBc/Hz)

187.4/189.2 183.4/186.2 181/184 186.9/186.9 182.8/182.8 185.2/185.2 178.2/178.2

Core area

(mm2)

0.2 0.45** 0.59** 0.07 0.33

Technology 0.13 lm CMOS 0.13 lm CMOS 0.18 lm CMOS 65 nm CMOS 65 nm

CMOS

FoM ¼ �PNþ 20 log f0=Dfð Þ � 10 log PDC=1mWð Þ
* Normalized from PN at 1 MHz offset

** Area including pads
� Corresponds to the boundary between current and voltage limited regime

Fig. 11 Measured FoM and output power against frequency

Fig. 9 Measured PN versus frequency offset at 10 GHz carrier
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lower PN assuming tank loss is dominated by the inductor.

Specifically, the factor 1=Q2 contributes 2.92 dB, and the

remaining improvement is due to the increased output

swing, since VRF ¼ IRF � RP where RP is the parallel tank

resistance approximated by 2p fLQ. Subsequently, at 10-

MHz offset, the VCO with DL-PFS inductor achieves a

maximum FoM of 189.2 dBc/Hz at 2.12 mW, while the

maximum FoM of the VCO with SL-PFS decays to 186.2

dBc/Hz at the increased PDC of 2.93 mW, as Fig. 10

illustrates. Besides that, flicker noise caused by Grosz-

kowski’s effect, which is the imbalanced condition in tank

reactive energy is also minimized, since a shift in low

frequency Df � fo caused by higher current n th harmonics

flowing into capacitive path will be restored to fo, as higher

inductor Q has a stronger tendency to counteract the

imbalance in tank reactive energy, where Groszkowski’s

effect is defined as [7]

Df
fo

¼ � 1

Q2

X1
n¼2

n2

n2 � 1
� Ifn

Ifo

� �2

ð2Þ

With the maximum FoM achieved through the biasing of

the VCO, at the boundary between the voltage- and cur-

rent-limited regime, the 27.6% reduction in PDC to obtain

that maximum also proves that RP and thus the inductor Q

of the VCO with DL-PFS inductor are *1.389 larger than

those of the VCO with SL-PFS, which is close to the EM

simulation results (1.49). Figure 11 presents the measured

FoM at 10 MHz offset and the output power across the

frequency tuning range. The variation of FoM and output

power is less than 0.6 dBc/Hz and 1 dB, respectively.

Benchmarking with a VCO containing a SL-PFS

inductor (Table 1), shows that the VCO with the proposed

DL-PFS inductor achieves a 3 dB improvement of the

maximum FoM. Likewise, our VCO with the proposed DL-

PFS inductor also reaches the highest FoM when compared

with the recently reported low-power VCOs in Table 2.

4 Conclusion

This letter reported a DL-PFS technique to reduce the

substrate loss of the on-chip spiral inductor by optimally

utilizing two of the lowest metal strips. DL-PFS achieved a

40% Q factor improvement when compared with the con-

ventional SL-PFS. The inductor with DL-PFS applied in a

class-B VCO and fabricated in 0.13 lm CMOS, achieves a

3-dB improvement of the maximum FoM and reduces

power consumption by 27.6%. The measured PN is

132.5 dBc/Hz at 10 MHz offset with a 10 GHz carrier

while dissipating 2.12 mW. The resulting FoM compares

favorably with the state-of-the-art.
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