26.9 A 0.038mm² SAW-less Multiband Transceiver Using an N-Path SC Gain Loop

Gengzhen Qi1, Pui-In Mak1, Rui P. Martins1,2

¹University of Macau, Macau, China, ²Instituto Superior Tecnico, Lisbon, Portugal

N-path filtering has been intensely rekindled as a replacement of costly SAW filters, making possible of multiband blocker-tolerant receivers (RXs) at small area and power, e.g., [1]. This paper proposes an *N-Path Switched-Capacitor (SC) Gain Loop* that is reconfigurable as an RF-tunable transmitter (TX) or RX with LO-defined center frequency. Comparatively, a SAW-less RX should be able to amplify a weak in-band (IB) signal in the presence of large out-of-band (OB) blockers, whereas a SAW-less TX should be able to deliver a large IB signal with low spectral leakage and OB noise. Such discrepancy inspires exploration of an *RX-TX-compatible N-path technique* to realize a multiband transceiver (TXR) with zero on-chip inductors and external matching components. Our TXR aims at the multiband LTE standard, and comparable performances are achieved at a die size 24x smaller than the recent art [2, 3].

The proposed *SC-Gain Loop* (Fig. 26.9.1a) is a negative-gain stage with an SC network as its feedback. Any signals, RF or BB, properly injected into the loop will undergo *gain*, *downmix* and *upmix*; all are primary functions of TX or RX. Thus, the SC-gain loop can operate as a basic TX by injecting the BB signal while extracting the RF signal (Fig. 26.9.1b), or a basic RX by injecting the RF signal while extracting the BB signal (Fig. 26.9.1c). This duality suggests the possibility of using the SC-gain loop as a reconfigurable TXR appropriate for LTE-TDD. Elegantly, the extra downmix path in the TX and upmix path in the RX allow the SC-gain loop to effectively combine with the *gain-boosted N-path technique* [4] to realize LO-defined high-Q bandpass (de)modulation, as described next.

To interface with the typical 4-phase BB signals (I/Q and differential) for quadrature modulation, a 4-path SC-gain loop can become a practical TX (Fig. 26.9.2). $V_{BB,TX1-4}$ are injected via passive-RC filters (R_{BT} and C_{BT}) that also suppress the OB noise of the BB sources (e.g., DACs). As the N-path filter (C_F and $SW_{L,R}$) is created around the gain stage (G_{mRF}), high-Q bandpass filtering is created at both V_{LTX} and $V_{o,TX}$ [4]. The loop gain offered by G_{mRF} reduces the required size of C_F (8pF) thanks to the Miller multiplication effect, and decouples the size of $SW_{L,R}$ to the OB rejection (i.e., smaller LO power).

Unlike the RX-only N-path solution in [1] that benefits from a large G_{mRF} (200mS) to improve the NF and OB linearity, the concerns of spectral regrowth and EVM for our TX mode restrict the extent of $G_{m,RF}$ (130mS). Also, in order to decouple the signal-handling ability of $G_{m,RF}$ to the overall TX output power, $V_{\text{0,TX}}$ is further amplified by a high-input-impedance PA driver (PAD) before driving the off-chip 50Ω load. The single-ended push-pull PAD is power efficient and offers a wide 1dB output bandwidth (~2.1GHz) adequate to cover >80% of the LTE bands from 0.7 to 2GHz. From pnoise simulations, the PAD contributes only 10% of the total OB noise (-157.7dBm/Hz) at 80MHz offset, which is indeed dominated by R_{BT} (24%), $G_{m,RF}$ (20%) and $SW_{\text{L,R}}$ + LO div-by-4 (20%). The rest comes from the 50Ω load and switches $SW_{\text{TX-RX}}$ for TX-RX mode control.

When the extra downmix path in Fig. 26.9.2 is omitted, our closed-loop TX returns to an open-loop style similar to [5] that aims at low OB noise emission by direct quadrature-voltage modulation. The key difference here is that the gain created by G_{mRF} is recycled to boost the Q of the bandpass responses at $V_{i,TX}$ and $V_{o,TX}$ as compared in Fig. 26.9.3a, rejecting the OB noise effectively.

The size of R_{BT} plays a key role in balancing the overall performance. As any resistors added to the N-path SC-gain loop can degrade the Q at $V_{I,TX}$ and $V_{O,TX}$, a large R_{BT} benefits the OB rejection but at the expense of certain passband gain due to the finite input impedance at $V_{I,TX}$ (Fig. 29.6.3b). In fact, as R_{BT} incurs noise as well, the rejection of OB noise will eventually saturate when enlarging only R_{BT} (Fig. 29.6.3c). For the spectrum purity, $V_{O,TX}$ contains typical LO harmonic emission with HRR3=9.5dB for N=4. Nevertheless, with the limited bandwidth of the PAD and output pad (bondwire), the HRR3 at the TX output $V_{RF,TX}$ is improved (Fig. 29.6.3d), and goes up with frequency (e.g., 23dB at 2GHz). The HD2 at $V_{RF,TX}$ is dominated by the single-ended PAD, and it is <-37dBc at a OdBm output in simulations (Fig. 26.9.3d), by properly matching the PAD's push-pull transistors. Note that the commercial high-power LTE PA (e.g., [6]) is narrowband and will

suppress all OB harmonics from its TX. Thus, the final spectrum should still be dominated by the PA harmonic distortion [6].

The 4-path SC-gain loop can embody as a multiband RX for differential I/Q demodulation using no off-chip matching (Fig. 29.6.4). The source port is injected at $V_{\rm LRX}$, where a bandpass input impedance is created by frequency-translating the BB lowpass response (~10MHz, defined by $R_{\rm BR} G_{\rm BR}$) to RF as bandpass, via the passive mixer SW_L. Note that SW_L + C_F already embed the downmix function saving one side of mixers [1]. Thanks to the loop gain created by $G_{\rm mRF}$, the BB circuitry sees a higher impedance back to the source port, allowing large $R_{\rm BR}$ (21k Ω) and small $G_{\rm BR}$ (1pF) to reduce the die area. Additionally, as $R_{\rm F}$ is no longer handicapped by the input-impedance matching, a large $R_{\rm F}$ (9.3k Ω) concurrently benefits the RF-to-BB gain, NF and OB rejection.

For the BB extraction, unlike [1] that uses resistors, here switches SW_{B} are employed (Fig. 29.6.4). SW_{B} and SW_{L} share the same set of 25%-duty-cycle LO, but are out-phased with each other. This undertaking obviates the BB noise from leaking directly to the source port, resulting in >1dB better simulated NF at 2GHz when comparing with [1].

The TXR fabricated in 65nm CMOS has a die area of 0.038mm² dominated by the capacitors (48pF) and PAD. The RF-input bandwidth is set at 10MHz to support the LTE10, and is adjustable via $R_{\rm BT}$ (Fig. 29.6.3b). Both $G_{\rm mBF}$ and $G_{\rm mBB}$ are inverter-based amplifiers to enhance the $g_{\rm m}/{\rm current}$ efficiency. The LO generator is a div-by-4 measuring an average power efficiency of 6.6mW/GHz. At 2GHz, its simulated phase noise is -159.8dBc/Hz at 80MHz offset.

For the TX mode, the P_{out} shows -1dBm at 1.88GHz (Band2) after de-embedding the cable and PCB loss. The $ACLR_1$ ($ACLR_2$) is -40dBc (-51.9dBc) (Fig. 29.6.5a) and EVM is 2.0%. The output noise floor is -154.5dBc/Hz at 80MHz offset and CIM_3 is -52dBc. The results are similar at 0.836GHz (Band5) and are summarized in Fig. 29.6.6. High-Q bandpass characteristics are consistently measured at different RF, by simply sweeping the LO frequency (Fig. 29.6.5b). The TX-mode consumes 31.3mW (Band5) to 38.4mW (Band2) (Fig. 29.6.5c).

For the RX mode, the S_{11} is <-12dB. The NF is 2.2dB at Band5, and up to 3.2dB at Band2 limited by the bondwire effects. Unlike [1] that targets a narrow RF BW (2.7MHz), here the RF BW is much wider (10MHz) and therefore the achieved OB-P_{1dB} (-5dBm) and OB-IIP3 (+8dBm) are both competitive at 80MHz offset. The OdBm-blocker NF is 16dB at 80MHz offset.

Benchmarking with the recent LTE TXs [2,3], our TRX in TX mode succeeds in creating multiband flexibility, while achieving a comparable TX efficiency at a much smaller die size. For our TRX in RX mode, similar NF and die size are achieved when comparing with [1], while this work operates at 1.25x higher RF and entails only a single supply (Fig. 29.6.7).

Acknowledgements:

The authors thank Macao FDCT and UM-MYRG2015-00040-FST for financial support and Dr. Zhicheng Lin for discussion on the receiver mode.

References:

- [1] Z. Lin, P.-I. Mak and R. P. Martins, "A 0.028mm² 11mW single-mixing blocker-tolerant receiver with double-RF N-path filtering, S₁₁ centering, +13dBm OB-IIP3 and 1.5-to-2.9dB NF," *ISSCC Dig. Tech. Papers*, pp. 36-37, Feb. 2015.
- [2] Y.-H. Chen, N. Fong, B. Xu and C. Wang, "An LTE SAW-less Transmitter Using 33% Duty-Cycle LO Signals for Harmonic Suppression," *ISSCC Dig. Tech. Papers*, pp. 172-173, Feb. 2015.
- [3] N. Codega, P. Rossi, A. Pirola, A. Liscidini and R. Castello, "A current-mode, low out-of-band noise LTE transmitter with a class-A/B power mixer," *IEEE J. Solid-State Circuits*, vol. 49, pp. 1627-1638, July 2014.
- [4] Z. Lin, P.-I. Mak and R. P. Martins, "A 0.5V 1.15mW 0.2mm² sub-GHz ZigBee receiver supporting 433/860/915/960MHz ISM bands with zero external components," *ISSCC Dig. Tech. Papers*, pp. 164-165, Feb. 2014.
- [5] X. He and J. van Sinderen, "A 45nm low-power SAW-Less WCDMA transmit modulator using direct quadrature voltage modulation," *ISSCC Dig. Tech. Papers*, pp. 120-121, Feb. 2009.
- [6] Anadigics LTE Power Amplifier (AWT6652).

Figure 26.9.1: a) SC-Gain Loop. It can operate as a b) TX under BB-injection RF-extraction, or c) RX under RF-injection BB-extraction.

Figure 26.9.2: 4-Path SC-Gain Loop as a TX.

Figure 26.9.3: Simulated TX-mode performances at 2GHz: a) $V_{i,TX}$ and $V_{o,TX}$; b)-c) R_{BT} controls the RF BW, stopband rejection and output noise; d) OB harmonics of $V_{RF,TX}$ at 0dBm output.

Figure 26.9.4: 4-path SC-Gain Loop as an RX.

10 dB/div Log	Ref 0.00 dB	<u> </u>	_			_	_		_	_	
-10.0	-		—. F	-4.5	₫Bm	₩	_		-	_	
-20.0	3 dBc	-42.7 dBc					-40.3 dE	3c		-51.9 dt	3c
-30.0						₩—			-	_	
-40.0			-#			+_			-	_	
-50.0	-F		7/			NI -		_	-	_	
-60.0	-		~~ /			- Inner	~~~	~			
-70.0	**************************************		-#			#		-	-	<u> </u>	Avera
-80.0			-			Ħ				\neg	
-90.0											
(Center 1.88 #Res BW 22										Span 5	
				#VB	W 220	kHz			S	weep	20 m
d) #ResBW 22	UKIIZ										
10=08360	GHz → 1.45 G	Hz → 1.88	GHz								
′ —		Hz → 1.88	GHz		40						
0 LO = 0.836 C		Hz → 1.88	GHz		40 35					LO	
0 LO = 0.836 C		Hz → 1.88	GHz		- 1	10		LO		LO	
0 LO = 0.836 C		Hz → 1.88	GHz		35	LO		LO		LO	
0 LO = 0.836 C		Hz → 1.88	GHz		35 —— 30 —— 25 ——	LO		LO		LO	
0 LO = 0.836 C		Hz → 1.88	GHz		35 — 30 — 25 — 20 —						
0 LO = 0.836 C		Hz → 1.88	GHz		35 —— 30 —— 25 ——	LO		LO		LO	
LO = 0.836 O		Hz → 1.88	GHz		35 — 30 — 25 — 20 —						
LO = 0.836 (GHz → 1.45 G			r Consumption (mW)	35 ————————————————————————————————————						
LO = 0.836 0			GHz		35 30 25 20 15 10 5	PAD		PAD		PAD	
LO = 0.836 0 -5 -10 -15 -15 -20 -25 -30	GHz → 1.45 G			Power Consumption (mW)	35 30 25 20 15 10 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	PAD	Hz 1	PAD	-lz	PAD	
0 LO = 0.836 0 -5 -10 -10 -15 -20 -25 -0 0.8	- Simul	lated • Mea	asured		35 30 25 20 15 10 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	PAD GmRF 0.836 G		PAD G _{mRF}		PAD GmrF	

Figure 26.9.5	i: a) Measui	red TX outp	ut spectrum	n for the LT	E Band2 (1.	88GHz);
b) Bandpass	responses	centered a	at different	LOs. c) Po	ower break	down at
different RF f	requencies.					

	This Work	– TX-Mode	JSSC	14[3]	ISSCC'15 [2]	
TX Techniques		Loop + d N-Path Filter Push-Pull PAD	Current- Class-A/B Po Passive	wer Mixer +	Voltage-Mode Mixer + 33%-Duty-Cycle LO + Passive Baluns	
On-chip Balun/Inductor	Ze	ro	Fo	ur	Two	
Multi-Band Flexibility	Define	by LO	Counto	n Baluns	Count on Baluns & Paths	
External Matching Parts	Zero (compatible w/ RX)		Zero (o	nly TX)	Zero (only TX)	
	Measured	10,10MHz signal BW)				
	Band2 (1.88 GHz)	Band5 (0.836 GHz)	Band2 (1.88 GHz)	Band5 (0.836 GHz)	Band13 (0.782 GHz)	
Output Power, Pout (dBm)	-1	-1.2	3.1	2.8	2	
Output Noise (dBc/Hz) @ freq. Offset (MHz)	-154.5 @ 80 -156 @ 45		-158 º @ 80	-159 ° @ 45	-157.9 @ 31 (P _{out} = -1dBm)	
ACLR _{EUTRA1} (dBc)	-40.3	-41.6	-43	-43.4	-54	
ACLR _{EUTRA2} (dBc)	-51.9	-50.3	-54.5	-54.9	N/A	
EVM (%)	2.0	2.1	1.4	1.4	0.8	
Power (mW)	38.4	31.3	69.6 b	73.6 b	216	
TX Efficiency (%)	2.1	2.4	2.9	2.6	0.7	
Active Area (mm²)	0.038		1.0	6 b	0.93	
Supply Voltage (V)	1.1,2.5		1.	8	1.8	
Technology (nm)	65		55	LP	40	

^a Measured with 50/20 Resource Block, ^b Without DAC, Biquad and 2 baluns given in [2] pp. 1636, Table I

Figure 26.9.6: Measured TX-mode performance comparison.

ISSCC 2016 PAPER CONTINUATIONS

Figure 26.9.7: TXR die micrograph and its RX-mode performance comparison.