Time-Domain I/Q-LOFT Compensator Using a Simple Envelope Detector for a Sub-GHz IEEE 802.11af WLAN Transmitter

Chak-Fong Cheang, Ka-Fai Un, Pui-In Mak and Rui P. Martins¹

State-Key Laboratory of Analog and Mixed-Signal VLSI and FST-ECE, University of Macau, Macao, China 1 – On leave from Instituto Superior Técnico, Universidade de Lisboa, Portugal

This paper proposes a hardware-efficient time-domain scheme to digitally compensate the I/Q imbalance and LO feedthrough (LOFT) of a sub-GHz wideband transmitter for the IEEE 802.11af WLAN. A simple envelope detector is the only analog part. The parameters are updated by Least-Mean-Square and estimated efficiently in time domain by using COordinate Rotation DIgital Computer (CORDIC), saving the training time and power consumption. The measured wideband image-rejection ratio (IRR) and LO-leakage-rejection ratio (LRR) are improved from 18.9 to 41.3 dB, and 20.4 to 37.9 dB, respectively.

I. INTRODUCTION

IEEE 802.11af [1] is emerged as a low-cost wireless local-area network (WLAN) for opportunistic use of the 10x-wide (54 to 862 MHz) sub-GHz TV bands. In practice, the I/O imbalance and LO feedthrough (LOFT) of such a wideband transmitter (TX) can highly degrade the output error vector magnitude (EVM), and manifest itself as a dc offset in the receiver (RX) limiting the dynamic range. Hence, a digital-intensive I/Q-LOFT compensator is common, by sensing the impairments with a RX [1]-[2] or an envelope detector (ED) [3]-[4] over the full spectrum. The I/Q imbalance of the RX [1] can inherently limit the correctable imagerejection ratio (IRR) of the TX, while ED in [3]-[4] entails an added-on DSP to perform a 2048-point fast Fourier transform to update the 2D lookup table, being power hungry and slow in the training process. Here, a Least-Mean-Square (LMS) I/Q-LOFT calibration scheme is proposed. It estimates, in the time domain, the impairment parameters, while using COordinate Rotation DIgital Computer (CORDIC) [5] to lower the entailed training time and power consumption.

II. PROPOSED TIME-DOMAIN I/Q-LOFT CALIBRATION SCHEME

In order to accurately detect the small envelope signal generated by I/Q imbalance and LOFT, the proposed ED (Fig. 1) senses the envelope of OUT_{DET} with a high voltage gain. The LOFT and I/Q image are mapped to f_{BB} and $2f_{BB}$ in the envelope, respectively. ED output can be modeled as,

$$OUT_{DET}(n) = |v_{RF}(n)|^2.$$
 (1)

By minimizing the cost function: $J(n) = E[e(n)e^*(n)]$, where $(\cdot)^*$ represents the complex conjugate. The error term e(n) between the detected envelope and the input is defined as,

$$e(n) = s(n) - I(n)^{2} - [\chi(n)][\eta(n)]^{T}, \qquad (2)$$

where $\chi(n) = [\alpha^2, \alpha \cos\gamma, \alpha \sin\theta, \sigma^2, \alpha \sin(\gamma-\theta)]$ and $\eta(n) = [Q(n)^2, 2I(n), -2I(n)Q(n), 1, 2Q(n)]$. The '1' in $\eta(n)$ accounts for the magnitude of the LOFT. Thus, the vector $\chi(n)$ is trained by LMS algorithm with the step size μ which can be expressed as,

$$\chi(n+1) = \chi(n) + \mu e(n)^* \eta(n).$$
(3)

Thus, impairment parameters are calculated as,

$$\alpha = \sqrt{\chi_1}, \theta = \sin^{-1}\left(\frac{\chi_3}{\sqrt{\chi_1}}\right), \sigma = \sqrt{\chi_4}, \phi = \cos^{-1}\left(\frac{\chi_2}{\sqrt{\chi_4}}\right). \tag{4}$$

Note that only the terms $\sigma^2 \text{ in } \chi(n)$ is not correlated to the BB input which implies the HD₃ of OUT_{DET} has most of the projection on σ^2 at the LMS training stage. The timing diagram for the entire calibration is shown in Fig. 2. OUT_{DET} and the delayed BB signal are the input of the LMS algorithm. Two CORDICs operators are exploited to calculate the square root of χ_1 and χ_4 as stated in (4). For hardware savings, the CORDICs are reused twice to calculate the two divisions, arcsine and arccosine.

III. MEASUREMENT RESULTS

The TX with a power amplifier was fabricated in 65-nm CMOS. The die photo and performance summary are depicted in Fig. 3, and the measurement setup is depicted in Fig. 4. The spectrum is observed by single-tone measurements. $\chi(n)$ has 15-bit resolution to estimate the impairment parameters. The step-size µ is designed to be 1/128. Updating $\gamma(n)$ in each training step entails 8 cycles of an 80-MHz clock. $\gamma(n)$ converges after 12,000 training steps (1.2 ms), which is considerably faster than the adaptive decorrelation method that requires 3 to 4 ms [2]. The measured performance is given in Fig. 5. The wideband IRR and LRR are improved from (18.9 to 29.0 dB \rightarrow 41.3 to 51.1 dB) and (20.4 to 31.7 dB \rightarrow 37.9 to 45.4 dB), respectively. Note that the TX's phase error is highly accurate, allowing one-shot calibration for the entire lower sub-band to save cost. The algorithm is based on a field-programmable gate array, and the required power, area and calibration time estimated in Cadence EncounterTM are given in Table I. The HD₃ of the ED mainly influences the accuracy of the LOFT estimation (Fig. 6), but not that of the I/Q imbalance. The calibrated LRRs are in good agreement with the simulation over a number of test chips [6].

IV. CONCLUSIONS

A time-domain I/Q-LOFT calibration scheme has been proposed for a sub-GHz wideband TX. Only an ED is required as the analog interface, and the parameters can be adaptively updated by using a LMS algorithm and estimated by CORDIC. One-shot calibration on wideband IRR and LRR can improve them to >41.3 dB and >37.9 dB, respectively.

ACKNOWLEDGEMENTS

This work is funded by the University of Macau (MYRG114-FST13-MPI) and the State-Key Lab Fund from FDCT.

References

- W.-H. Yu, et al., "A nonrecursive digital calibration technique for joint elimination of transmitter and receiver I/Q imbalances with minimized add-on hardware," *IEEE Trans. Circuits Syst. II, Exp.*, vol. 60, no. 8, pp. 462-466, Aug. 2013.
- [2] I. Elahi, et al., "I/Q mismatch compensation using adaptive decorrelation in a low-IF receiver in 90-nm CMOS process," *IEEE J. Solid-State Circuits*, vol. 41, no. 2, pp. 395-404, Feb. 2006.
- [3] C. P. Lee, et al., "A highly-linear direct-conversion transmit mixer transconductance stage with local oscillator feedthrough and I/Q imbalance cancellation scheme," in *ISSCC Dig. Tech. Papers*, Feb. 2006, pp. 1450-1459.

- [4] E. Lopelli, et al., "A 40nm wideband direct-conversion transmitter with sub-sampling-based output power, LO feedthrough and I/Q imbalance calibration," in *ISSCC Dig. Tech. Papers*, Feb 2011, pp 424-425.
- [5] R. Andraka, "A survey of CORDIC algorithms for FPGAs," in Proc. ACM ISFPDA, Mar. 1998, pp. 191–200.
- [6] K.-F. Un, et al., "A sub-GHz wireless transmitter utilizing a multi-class-linearized PA and time-domain wideband-auto I/Q-LOFT calibration for IEEE 802.11af WLAN," *IEEE Trans. on Microw. Theory And Techn.*, vol. 63, no. 10, pp. 3228-3241, Oct. 2015.

Fig. 1. The ED extracts the I/Q imbalance and LOFT. M_{d1} and M_{d2} generate the envelope of the input signal and are followed by a common-source amplifier and passive-RC lowpass filter. The 3-dB bandwidth of the latter is set at ~1 MHz to provide >65 dB rejection at the LO's 2nd harmonic. A proper bias level (V_{b2}) ensures the detector is working in the linear region.

Fig. 2. Timing diagram of the proposed I/Q-LOFT calibration using time-domain parameter estimation.

Fig. 3. Chip micrograph of the wideband TX and its performance summary.

Fig. 4. Measurement setup for the I/Q-LOFT calibration scheme.

Fig. 5. Measured IRR (upper) and LRR (lower) with and without calibration.

 TABLE I.

 PERFORMANCE ESTIMATION OF THE I/Q-LOFT CALIBRATION ALGORITHM IN 65-NM CMOS AT 1.2 V AND 25°C.

FPGA Operation	Algorithm	Used No. of Operator	Power (µW)	No. of Gate	Area (µm²)	No. of Clock cycle
Updating Block	LMS	1	234.879	1099	4954.5	8 × 12000
Parameter Estimator and Compensator	CORDIC	2	264.631	2104	8107.3	25 × 6
	Division	2	128.233	421	1597.4	9
	Multiplication	4	90.595	371	1714.4	1
	Add	4	10.360	36	149.7	1

Fig. 6. The HD₃ of the ED in relationship with the non-calibrated LRR (LRR $_{non-cal}$) and calibrated (LRR $_{cal}$)