Multi-range, Ultra-lower Power, -20 to 60° C CMOS Smart Temperature Sensor with $\pm 0.1^{\circ}$ C Accuracy

Sanfeng Lu¹, Man-Kay Law¹, Pui-In Mak¹ and Rui P. Martins^{1,2}

¹State-Key Laboratory of Analog and Mixed Signal VLSI, FST-ECE, University of Macau, Macao, China ² On leave from Instituto Superior Técnico/Universidade de Lisboa, Portugal

Abstract—This paper presents a multi-range ultra-lower power high accuracy CMOS smart temperature sensor based on substrate BJTs and a first-order incremental delta-sigma analogto-digital converter ($\Delta\Sigma$ -ADC) targeting on applications where accuracy and power have higher priority over the sensing range and speed requirement. By using a reconfigurable pre-gain stage, the input range of the $\Delta\Sigma$ -ADC can be optimized for different application specific temperature sub-ranges, relaxing the resolution as well as power requirements for subsequent analogto-digital conversion. High accuracy with reduced control circuit complexity is achieved through the use of dynamic element match (DEM) and multi-cycle integration. The proposed CMOS temperature sensor is designed for three temperature sub-ranges (-20°C to 7°C, 5°C to 35°C, and 33°C to 60°C) using a standard 0.18µm CMOS technology. An inaccuracy of ±0.1°C is achieved in all the three sub-ranges using only one-point calibration while consuming 1µW.

I. INTRODUCTION

Compared to the traditional temperature sensors using discrete devices like thermistors or platinum resistors, smart temperature sensors based on low-cost standard CMOS technology are becoming more and more popular as the sensor interface electronic can be fabricated in a single chip, producing a readily interpretable temperature reading in a digital format. Various CMOS temperature sensor designs with high accuracy, ultra-low power, wide sensing range and fast conversion for various applications have already been demonstrated [1-4].

Recently, smart temperature sensors are widely applied to many emerging areas, such as chip temperature monitoring for protecting integrated electronic systems from overheating to ensure long-term reliability [1], cold-chain temperature tracking for goods preservation [2-3], human body temperature monitoring for improved healthcare [4], as well as ambient temperature sensing for smart home systems. These new applications necessitate various design specifications, and generally require ultra-low power consumption for extended operation lifetime and high accuracy for precise temperature measurement. The sensing range requirement, however, is more relaxed as it is becoming to a great extent application defined (e.g. cold chain monitoring and biomedical applications). By optimizing the temperature sensing range with the full-range of the ADC, the ADC resolution and bandwidth requirements to achieve high temperature accuracy can be much relaxed, resulting in an ultra-low power high accuracy CMOS temperature sensor design. Yet, a limited

Fig. 1 Working principle of a conventional smart temperature sensor.

sensing range can restrain the possible application areas.

This paper presents a multi-range ultra-low power high accuracy CMOS smart temperature sensor covering three different temperature sub-ranges, i.e. low temperature subrange (L) from -20°C to 7°C, medium temperature sub-range (M) from $5^{\circ}C$ to $35^{\circ}C$, and high temperature sub-range (H) from 33°C to 60°C, while preserving an accuracy of ± 0.1 °C in every sub-range. This is achieved by integrating a pre-gain stage [5] into a first-order incremental $\Delta\Sigma$ -ADC. Temperature data feedback is utilized to automatically reconfigure the pregain stage to switch between different sub-ranges while preserving high sensing accuracy with ultra-low power consumption. Different sampling frequency to compensate for the temperature effect has also been exploited to optimize the power efficiency and accuracy of the integrator. A multi-cycle integration scheme is introduced to reduce the excessive control overhead of the pre-gain stage.

This paper is organized as follows. Section II illustrates the sensor operation principle. Section III describes the circuit techniques while simulation results are showed in Section IV. Section V draws the conclusions.

II. OPERATION PRINCIPLE

A ratiometric readout scheme, which is a ratio of the temperature dependent signal to the reference signal, is employed to produce a readily interpretable temperature reading in a digital format. For a smart temperature sensor, the bipolar junction transistor (BJT) temperature-characteristic [6] is utilized to generate this ratio. The temperature reading can be obtained by a "one-shot" operation offered by an incremental $\Delta\Sigma$ -ADC. Fig. 1 illustrates the operation principle of BJT-based temperature sensor.

A. Conventional Structure

Fig. 2 shows two identical diode-connect BJTs $Q_{1,2}$ biased

Fig. 2 Simplified analog front end of the proposed temperature sensor.

by a 1:p current ratio to generate two complementary-toabsolute-temperature (CTAT) voltages as follows:

$$V_{BE1} = \frac{kT}{q} ln \frac{l_{C1}}{l_{S1}} \tag{1}$$

$$V_{BE2} = \frac{kT}{q} ln \frac{l_{C2}}{l_{S2}}$$
(2)

where I_{C1} , I_{C2} , I_{S1} and I_{S2} are the corresponding collector currents and saturation currents of the two BJTs, k is the Boltzmann constant, q is the electron charge and T is the temperature in ${}^{\circ}K$. The difference between the two CTAT voltages is proportional-to-absolute-temperature (PTAT):

$$\Delta V_{BE} = V_{BE2} - V_{BE1} = \frac{kT}{q} \ln p \tag{3}$$

As shown in Fig. 1, the V_{BE2} and ΔV_{be} voltages can be linearly combined to generate a temperature independent reference signal V_{ref} , where α is a fixed gain factor to balance the positive and negative temperature coefficients. The digital ratio μ is scaled to temperature *T* and can be obtained by $\Delta \Sigma$ -ADC, which can be expressed as:

$$\mu = \frac{\alpha \Delta V_{BE}}{V_{BE2} + \Delta V_{BE}} \tag{4}$$

Finally, μ can be scaled back to represent the instantaneous temperature data (D_{out}) in °C through a digital filter:

$$D_{out} = A\mu + B \tag{5}$$

where A and B are constants with $A \approx 600$ and $B \approx 273$ as stated in [7].

A more accurate μ is required for a better approximation to the real temperature. This necessitates a small quantization error in the $\Delta\Sigma$ -ADC. To achieve an accuracy in the order of 0.01°C, the resolution of the $\Delta\Sigma$ -ADC should be as high as 16 bits. This results in an excessive conversion time (2¹⁶ cycles for a first-order implementation), jeopardizing the temperature sensor energy efficiency. Conventionally, this can be solved by a high-order modulator with a large integrator bandwidth, with the disadvantages of increased circuit complexity and overall power consumption.

Fig. 3 Simplified block diagram of $\Delta\Sigma$ -ADC with a reconfigurable pre-gain stage and temperature data feedback.

B. Proposed Structure

It can be observed that for a traditional smart CMOS temperature sensor, the input signal full scale is equivalent to approximately 600 °K. Notice that the military full range spanning from -55 to 125°C only occupies one third of this input range. For many recent emerging applications, e.g. cold chain temperature monitoring, human-body temperature monitoring etc., the targeted temperature range is much narrower than the military range, rendering an inefficient $\Delta\Sigma$ -ADC implementation. This work is aimed to increase the $\Delta\Sigma$ -ADC input range coverage for relaxed resolution requirement by employing a reconfigurable pre-gain stage to optimize the sensing range according to different practical application requirements, as shown in Fig. 3. The proposed structure samples ΔV_{he} and V_{he} with two sets of gain stages to modify their differences based on the $\Delta\Sigma$ -ADC bit-stream output (BS) for better utilization of the sensing range with the full input range of $\Delta\Sigma$ -ADC. The gain ratios including α and k_{1-4} are implemented by a capacitor array with DEM technique to minimize the gain error as a result of capacitor mismatch. To solve the problem of the limited application areas as a result of the reduced temperature sensing range, temperature data feedback is utilized to reconfigure the pre-gain stage to achieve multi-range sensing.

The principle of the incremental $\Delta\Sigma$ -ADC is based on charge balancing and is illustrated as:

$$Q_{charging} = C_{int} \cdot (k_1 \cdot \alpha \cdot \Delta V_{BE} - k_2 \cdot V_{BE})$$
(7)

$$Q_{discharging} = C_{int} \cdot (k_3 \cdot \alpha \cdot \Delta V_{BE} - k_4 \cdot V_{BE}) \quad (8)$$

where $Q_{charging}$ and $Q_{discharging}$ are the charges integrated when BS=0 and BS=1, respectively. After totally M cycles and N cycles for BS=1, the following charge balancing equation results:

$$(M - N) \cdot Q_{charging} + N \cdot Q_{discharging} = 0 \tag{9}$$

The ratiometric readout μ' obtained can be expressed as:

$$\mu' = \frac{N}{M} = \frac{k_1 + k_2}{k_1 - k_3} \cdot \frac{\alpha \Delta V_{BE}}{V_{BE2} + \Delta V_{BE}} - \frac{k_2}{k_1 - k_3}$$
$$= G \cdot \frac{\alpha \Delta V_{BE}}{V_{BE2} + \Delta V_{BE}} + C$$
(10)

Fig. 4 Comparison of ratiometric output between the conventional (μ) and proposed structure with pre-gain (μ').

where *G* and *C* denotes the gain and offset, respectively. When compared with the traditional implementation (4), (10) indicates a more efficient sensing range coverage which can be achieved by adjusting *G* and *C*. Furthermore, these two terms are dependent only on k_{1-4} , which can be accurately achieved by DEM. For the same quantization error (e.g. 0.01°C), the resolution requirement can be relaxed by ΔB bits:

$$\Delta B = \log_2 \left(\frac{k_1 + k_2}{k_1 - k_3} \right) \tag{11}$$

This results in a much relaxed $\Delta\Sigma$ -ADC design requirement to achieve high temperature sensing accuracy. A reconfigurable pre-gain stage is designed to achieve wide temperature range overage while preserving low $\Delta\Sigma$ -ADC design complexity and high accuracy. According to (10), this can be readily achieved by using different *G* and *C* with several k_{1-4} ratios, as illustrated in Fig. 4. Here, we have implemented a smart temperature sensor for three temperature sub-ranges (L, M and H) to cover an extended -20 to 60°*C* range, using the k_{1-4} parameters as shown in Table I. A 2 °C guard band is implemented between neighboring sub-ranges to ensure the system robustness in case of temperature hysteresis.

III. $\Delta\Sigma$ -ADC with pre-gain stage

For temperature signal conversions, the pre-gain stage first samples V_{BE} and ΔV_{BE} extracted from the front-end bias circuit. A $\Delta\Sigma$ -ADC is then employed to digitize the combination of V_{BE} and ΔV_{BE} into a bit-stream.

A. Reconfigurable pre-gain stage

As shown in Fig. 3, reconfigurable pre-gains are realized by using different ratios implemented with a number of sampling unit capacitors. Due to the large ratios required for α and k_{1-4} , a significant number of unit capacitors are required which will inevitably increase the chip area as well as the DEM control complexity. To solve this problem, a multi-cycle integration scheme that trades off chip area and design complexity with

TABLE I GAIN PARAMETER SELECTIONS

Range	L (-20~7 °C)	M (5~35 °C)	H (33~60 °C)
<i>k</i> ₁	9	7.5	7
k2	7	7	8
k ₃	8	6.5	6
k_4	8	8	9

conversion time is introduced. As a consequence, the required number of sampling unit capacitors can be reduced to 1/N when compared with the conventional integration scheme, where N is equal to the number of integration cycles. In our implementation we set N = 8 and the estimated area reduction can be up to almost 50%.

B. Capacitor optimization

Since the number of sampling capacitors is largely reduced, the corresponding settling time in the sampling front-end is also relaxed which can help to improve the overall energy efficiency. Assuming an error tolerance of $\varepsilon = 0.1\%$, a settling time of $\tau \ln(1/\varepsilon)$ is required, where τ is the corresponding time constant. This sets the upper limit of C_s for a half clock period sampling time. Due to the use of multi-cycle integration, a smaller C_s is obtained which can lead to increased thermal noise. This, however, can be compensated by the relaxed $\Delta\Sigma$ -ADC resolution requirement. In our design, we set the value of C_s in order the thermal noise is smaller than the quantization noise to achieve the required resolution.

C. Variable sampling frequency in different sub-ranges

Since I_{bias} is temperature dependent, the front-end circuit settling time also varies with temperature. This can be compensated by providing a larger I_{bias} in the sub-range L and a smaller one in the sub-range H, with the disadvantage of increased control complexity. In our implementation, we ensure accurate settling in all the three temperature sub-ranges by using a temperature dependent clock to sample the PTAT and CTAT voltages [8]. The selected f_{clk} for sub-ranges L, M and H are 20kHz, 25kHz and 28kHz, respectively.

IV. SIMULATION RESULTS

This work is implemented in a standard 0.18µm CMOS process. The input range of the $\Delta\Sigma$ -ADC has been optimized in all the sub-ranges with temperature data feedback to switch between the sub-ranges in case of temperature hysteresis. The corresponding simulation results are shown in Fig. 5. It can be observed that an accuracy of $\pm 0.1^{\circ}C$ for the entire temperature range can be achieved using only one-point calibration. Fig. 6 shows the simulated results using individual calibration in each sub-range, and the corresponding residue error can be further reduced to $\pm 0.05^{\circ}C$. Simulation results show that a maximum energy saving of ~20% per conversion can be achieved in sub-range H by using the variable sampling frequency scheme. Fig. 7 shows the power breakdown at nominal operating condition in sub-range M (i.e. $27^{\circ}C$). It can be seen that almost half of the total power is consumed by the $\Delta\Sigma$ -ADC. Table II shows the

Fig. 5 Simulated sensing accuracy for the three sub-ranges with one point calibration.

Fig. 6 Simulated sensing accuracy for the three sub-ranges with individual calibration.

performance comparisons with the previous works. The proposed temperature sensor has a more flexible temperature sensing range while keeping a high accuracy with low power consumption and one point calibration.

V. CONCLUSIONS

This paper presents a multi-range ultra-lower power, high accuracy CMOS smart temperature sensor based on substrate BJT and a first-order incremental $\Delta\Sigma$ -ADC with pre-gains. This sensor can be used in modern expanded areas with the sensing range defined by multiple sub-ranges, high accuracy and low power consumption.

An inaccuracy of below $\pm 0.1^{\circ}C$ has been achieved after onepoint calibration for wide sensing range applications and $\pm 0.05^{\circ}C$ with individual calibration for targeted short sensing range applications while the power-consumption is only 1 μ W.

ACKNOWLEDGEMENT

Research financially supported by the Macao Science and Technology Development Fund (015/2012/A1) and Research Committee of University of Macau (MYRG115-FST12-LMK, MYRG100-FST13-LMK, MYRG2015-00140-AMSV).

Fig. 7 Power breakdown of this proposed sensor at 27°C.

 TABLE II
 PERFORMANCE COMPARISONS

	This work [#]			[1]^	[4]^	[5]#		
Process	0.18µm			0.16µm	0. 35µm	0.1 8µm		
Temperature Range (°C)	-20~60		55 125	25 45	35~45			
	-20~7	5~35	33~60	-55~125	33~43	(27~47)		
Power(µW)	~1			5.1	0.11	1.1		
Inaccuracy	±0.1				±0.04			
(°C)	±0.03	±0.05	±0.02	±0.15	±0.1	(±0.1)		
Sampling Rate (Sa/s)	~0.7			188	10	2		
Calibration point	1			1	2	1		
# Simulation Results								

^ Measurement Results

REFERENCES

- K. Souri, Y. Chae and K. A. A. Makinwa, "A CMOS Temperature sensor with a voltage-calibrated Inaccuracy of ±0.15°C (±3σ) from -55°C to 125°C," *IEEE J. of Solid-State Circuits*, vol.48, no.1 pp.292-301, Jan 2013.
- [2] M. K. Law, A. Bermak and H. C. Luong, "A sub-μW embedded CMOS temperature sensor for RFID food monitoring application," *IEEE J. of Solid-State Circuits*, vol. 45, no. 6, pp. 1246-1255, Jun. 2010.
- [3] J. Yin, J. Yi, M. K. Law, Y. Ling, M. C. Lee, K. P. Ng, B. Gao, H. C. Luong, A. Bermak, M. Chan, W. H. Ki, C. Y. Tsui and M. Yuen, "A System-on-Chip EPC Gen-2 Passive UHF RFID Tag With Embedded Temperature Sensor," *IEEE J. of Solid-State Circuits*, vol 45,no.11, pp.2404-2420, Oct. 2010.
- [4] A. Vaz, A. Ubarretxena, I. Zalbide, D. Pardo, H. Solar, A. Garcia-Alonso and R. Berenguer, "Full passive UHF tag with a temperature sensor suitable for human body temperature monitoring," *IEEE Trans. Circuits Syst. II: Exp. Briefs*, vol. 57, no. 2, pp. 95-99, Feb. 2010.
- [5] T. Wu, M. K. Law, P. I. Mak and R. P. Martins, "An ultra-low power CMOS smart temperature sensor for clinical temperature monitoring," *Proceedings of IEEE International Conference of Electron Devices and Solid-State Circuits (EDSSC)*, pp.1-2, June 2013.
- [6] G.C.M. Meijer, G. Wang, and F. Fruett, "Temperature sensors and voltage references implemented in CMOS technology," *IEEE Sensors J.*, vol. 1, no. 3, pp.225 -234, Oct. 2001.
- [7] M. A. P. Pertijs, A. Niederkorn, X. Ma, B. McKillop, A. Bakker, and J. H. Huijsing, "A CMOS smart temperature sensor with a 3σ inaccuracy of 0.5°C from 50°C to 120°C," *IEEE J. of Solid-State Circuits*, vol. 40, no. 2, pp. 454–461, Feb. 2005.
- [8] A. L. Aita, M. A. P. Pertijs, K. A. A. Makinwa and J. J. Huijsing "Low-power CMOS smart temperature sensor with a batched-calibrated inaccuracy of ±0.25°C (±3σ) from -70°C to 130°C," *IEEE Sensors J.*, vol. 13, no. 5, pp.1840 -1848, May 2013.