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Abstract—A calibration technique is proposed to apply for split 
capacitor array of successive approximation register (SAR) ADC. 
This technique calibrates the parasitic effects of the split 
capacitor array by two-step ratio approaching technique, and 
achieves medium-to-high resolution. The calibration technique is 
designed and simulated under a 10-bit 100MS/s SAR ADC 
structure, with 15% to 25% of top plate parasitic capacitance. 
The simulation results show that the proposed technique can 
improve the THD from -41 dB to -59 dB at Nyquist input 
frequency for the worst case. The DNL/INL is improved from 
5.02/5.6 LSB to 0.25/0.38 LSB, respectively. 

Keywords--analog-to-digital converter (ADC); split capacitor 
array; sucessive approximation register (SAR); parasitic 
calibration; offset calibration 

I. INTRODUCTION 
SAR ADC is a popular ADC architecture applied for many 

high-performance digital communication systems and high-
quality video systems because SAR ADC can achieve medium-
speed, power-efficient, and medium-resolution requirements. 
Fig. 1 shows the basic architecture of a SAR ADC, which 
consists of a digital-to-analog converter (DAC) array, 
successive approximation logic, and a comparator [1]. The SA 
logic controls the operation of the DAC by performing binary-
scaled feedback. The DAC array samples input signal and 
processes residue from subtraction with the reference voltage 
during conversion, so it is the core part of the SAR ADC. 

The split capacitor array is more attractive than traditional 
binary-weight capacitor (BWC) array because of smaller input 
equivalent capacitance and lower power consumption [2]. 
However, the parasitic capacitance reduces the linearity of the 
DAC array, which degrades the overall performance of the 
ADC [3]. Especially in modern nanometer technology, small 
unit capacitors are widely used due to speed and power 

consideration, which causes more non-idealities for the split 
capacitor array because the parasitic effect becomes more 
critical. 

A split-capacitor array with a larger attenuation capacitor 
together and a calibration capacitor bank is proposed here after 
the development from [4] and [5] and enhances the linearity of 
the implementation. Instead of using C-2C capacitor array as [4] 
and [5], the proposed calibration capacitor bank reduces the 
parasitic capacitance limitation. This paper presents a new 
digital calibration technique which applies two linear voltages 
to the ADC first, then operates until the specified binary ratio is 
approached. The calibration algorithm works with the proposed 
capacitor bank to reduce non-linearity caused by parasitic 
effect.  

II. CAPACITOR ARRAY 

A. Conventional Split Capacitor Arrary 
The conventional architecture of a split capacitor array is 

shown in Fig. 2, where the thin lines represent the top plate of 
the capacitors. The attenuation capacitor is usually calculated 
as [6]: 
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Where L and M are the number of bit of LSB and MSB array 
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Figure 1. Basic SAR ADC architecture Figure 2. Conventional split capacitor array 
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respectively, and C0 is the unit capacitor of the DAC array. 
Assume M=L, so that the input capacitance of the DAC array is 
minimized. Then the equivalent output voltage of the split 
capacitor array can be expressed as: 
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where Sn represents the switches connected to the DAC array, 
Cp1 and Cp2 are the total top-plate parasitic of LSB array and 
MSB array respectively. From the equation (4), the parasitic 
Cp2 only causes gain error, but Cp1 brings non-linearity to the 
DAC array. The parasitic problem can be diminished by 
reducing the number of bits in the LSB array, and enlarging the 
MSB array [3]. But the disadvantage is larger equivalent input 
capacitance and induces lower-speed, larger area, and power 
usage. 

B. Split Capacitor Arrary with calibration capacitor bank 
Fig. 3 shows the architecture of the split capacitor array 

with calibration capacitor bank. The conventional attenuation 
capacitor Catten shown in equation (1) is replaced by a C0 to 
equalize the nominator between the LSB array and MSB array, 
and thus enhance the linearity. The value of  can be 
calculated as: 
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In practical cases, there are some process variations during 
fabrication, so that Cp1 varies with processes. Therefore, 
calibration is required to ensure the circuit always works 
appropriately. 

It is impossible to adjust the value of  during the calibration 
process because it is extremely sensitive to Cp1. Thus, a larger 

 value must be selected for revising the parasitic range. A 
capacitor bank is used for digital calibration so that the 
equation becomes: 
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Due to the denominator of (2M-1-1) C0, it is easier to adjust the 
switches of Cbank to approach the same achievement instead of 
adjusting . The calibration circuit applies two linear voltages 
to the DAC array first. Then it controls the switches of Cbank to 
approach specified binary ratio. The detail information about 
the calibration algorithm is provided in the implementation 

session. 

III. IMPLEMENTATION METHOD 
The proposed split capacitor array and the calibration logic 

are implemented on a 10-bit SAR ADC in 65nm CMOS 
technology. Fig. 4 shows the block diagram of the 
implemented circuit. The configuration of the split capacitor 
array is 5-bit for the LSB array and 5-bit for the MSB array. A 
unit capacitor (C0) is about 10fF, which has approximately 
20% of top plate parasitic after routing. Assume there is ±5% 
variation of parasitic. The attenuation capacitor should be 
around 16fF by equation (5). Then the calibration capacitor 
bank is estimated to be about 100fF by equation (6). The value 
of Ccal is set to 10fF. 

The overall calibration flow chart is shown as in Fig. 5. The 
first step of calibration is to fixed comparator offset which 
affects the ADC output codes and therefore obstructs the 
processing of parasitic calibration. After that, the parasitic 
calibration logic analyzes the ADC code and determines 

Figure 3. Split capacitor array with calibration capacitor bank 
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whether the calibration progress is done or not. The following 
sub-sections describe detail of calibration logics. 

A. Offset Calibration Logic 
Fig. 6 shows the offset calibration circuit block diagram 

respectively. Assumed the comparator offset is Voffset, Vcal is 
fed to the upper DAC array, and the lower DAC array connects 
with common-mode voltage VCM. The main purpose is to 
change Vcal from VCM to VCM+Voffset in order to cancel the 
comparator offset equivalently, and therefore fully utilize the 
capacitor array without any modification on the comparator 
circuit. During the offset calibration process, the differential 
split capacitor arrays are disconnected from the inputs of the 
comparator. The calibration voltage Vcal is generated from the 
10-bit R-2R DAC and compared to VCM by the offset 
calibration logic (10-bit counter). The R-2R DAC requires 10-
bit resolution to achieve 1 LSB step. The calibration logic stops 
when the output signal of the comparator is flipped. 

Compare to conventional offset calibration [4] which 
adjusts bulk voltage of the comparator input transistor, 
requiring the extra mask for deep N-well implantation. The 
proposed offset calibration only employs an R-2R DAC and a 
counter, which can be utilized in general fabrication process. 

B. Parasitic Calibration Logic 
The flow chart of the parasitic calibration progress is shown 

in Fig. 7. The parasitic calibration logic starts after the offset 
calibration. The non-linearity effect for the split capacitor aray 
tarts when the code changes from 0000011111 to 0000100000 
because the bit shifted from LSB array to MSB array. 
Therefore, the ADC output code reflects the linearity when 
applying two linear voltages that can generate codes shifting 
from LSB array to MSB array.  In the implemented 10-bit case, 
a 10-bit reference ladder is the pre-requirement for the 
calibration. 

The calibration logic compares the ADC output codes to 
determine the linearity. Refer to Fig. 4, during the parasitic 
calibration process, Vinp and Vinn are disconnected from the 
DAC arrays. VCM+Vref/8 and VCM-Vref/8 are connected between 
the DAC arrays to generate Vref/4 between the differential 

inputs, where VCM+Vref/8+Vref/16 and VCM-Vref/8-Vref/16 
generate Vref/8 between the differential inputs. The calibration 
logic stops when the ADC codes are in ratio of 2:1. After the 
calibration process, Vinp and Vinn are resumed back to the DAC 
arrays for normal SAR ADC operation. 

After all calibrations are done, the last step is turning off all 
calibration circuits and reference ladder to save power. The R-
2R DAC can be power-off by switching all binary-scale R to 
ground because offset does not affect the SAR ADC structure. 
The VCM is supposed to resume back to the upper DAC array 
instead of Vcal. 

IV. SIMULATION RESULTS 
The 10b SAR ADC utilized the proposed split capacitor 

array and calibration algorithm has been designed in 65 nm 
CMOS technology with 1 V supply. All the simulation is 
simulated under the sampling frequency of 100MS/s at Nyquist 
input, with 20% of top plate parasitic capacitance. The 
simulation performance shows that the calibration improved 
the total harmonic distortion (THD) from -41 dB (6.5 bits) to -
59 dB (9.5 bits), as shown in Fig. 8 (a) and (b) respectively. 
The DNL/INL is improved from 5.02/5.6 LSB to 0.25/0.38 
LSB, respectively. Fig. 9 (a) shows the DNL and INL 
performance before calibration. Fig. 9 (b) shows the DNL and 
INL performance after calibration.  The estimated power 
consumption for the digital calibration logic is about 30 �W. 

V. CONCLUSION 
A calibration technique is proposed for split capacitor array 

SAR ADC. This technique calibrates the parasitic effects of the 
split capacitor array, and achieves medium-to-high resolution. 
The calibration algorithm applies two linear voltages to the 
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ADC first. Then it operates until the specified binary ratio is 
approached.  The calibration is designed and simulated under a 
10-bit 100MS/s SAR ADC structure, with 15% to 25% of top 
plate parasitic capacitance. The simulation results show that the 
proposed calibration technique can improve the THD from -41 
dB to -59 dB at Nyquist input frequency for the worst case. 
The DNL/INL is improved from 5.02/5.6 LSB to 0.25/0.38 
LSB, respectively. 
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